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Abstract 
With increasing adoption of electronic health records (EHRs), the need for formal representations for EHR-driven 
phenotyping algorithms has been recognized for some time. The recently proposed Quality Data Model from the 
National Quality Forum (NQF) provides an information model and a grammar that is intended to represent data 
collected during routine clinical care in EHRs as well as the basic logic required to represent the algorithmic 
criteria for phenotype definitions. The QDM is further aligned with Meaningful Use standards to ensure that the 
clinical data and algorithmic criteria are represented in a consistent, unambiguous and reproducible manner. 
However, phenotype definitions represented in QDM, while structured, cannot be executed readily on existing 
EHRs. Rather, human interpretation, and subsequent implementation is a required step for this process. To address 
this need, the current study investigates open-source JBoss® Drools rules engine for automatic translation of QDM 
criteria into rules for execution over EHR data. In particular, using Apache Foundation’s Unstructured Information 
Management Architecture (UIMA) platform, we developed a translator tool for converting QDM defined 
phenotyping algorithm criteria into executable Drools rules scripts, and demonstrated their execution on real 
patient data from Mayo Clinic to identify cases for Coronary Artery Disease and Diabetes. To the best of our 
knowledge, this is the first study illustrating a framework and an approach for executing phenotyping criteria 
modeled in QDM using the Drools business rules management system.  

Introduction 
Identification of patient cohorts for conducting clinical and research studies has always been a major bottleneck and 
time-consuming process. Several studies as well as reports from the FDA have highlighted the issues in delays with 
subject recruitment and its impact on clinical research and public health 1-3. To meet this important requirement, 
increasing attention is being paid recently to leverage electronic health record (EHR) data for cohort identification4-6. 
In particular, with the increasing adoption of EHRs for routine clinical care within the U.S. due to Meaningful Use7, 
evaluating the strengths and limitations for secondary use of EHR data has important implications for clinical and 
translational research, including clinical trials, observational cohorts, outcomes research, and comparative 
effectiveness research. 

In the recent past, several large-scale national and international projects, including eMERGE8, SHARPn9, and 
i2b21010101010, are developing tools and technologies for identifying patient cohorts using EHRs. A key component in 
this process is to define the “pseudocode” in terms of subject inclusion and exclusion criteria comprising primarily 
semi-structured data fields in the EHRs (e.g., billing and diagnoses codes, procedure codes, laboratory results, and 
medications). These pseudocodes, commonly referred to as “phenotyping algorithms”11, also comprise logical 
operators, and are in general, represented in Microsoft Word and PDF documents as unstructured text. While the 
algorithm development is a team effort, which includes clinicians, domain experts, and informaticians, informatics 
and IT experts often operationalize their implementation. Human intermediary between the algorithm and the EHR 
system for its implementation is required for primarily two main reasons: first, due to the lack of formal 
representation or specification language used for modeling the phenotyping algorithms, a domain expert has to 
interpret the algorithmic criteria. And second, due to the disconnect between how the criteria might be specified and 
how the clinical data is represented within an institution’s EHR (e.g., algorithm criteria might use LOINC® codes 
for lab measurements, whereas the EHR data might be represented using a local or proprietary lab code system), a 
human interpretation is required to transform the algorithm criteria and logic into a set of queries that can be 
executed on the EHR data. 

To address both these challenges, the current study investigates the Quality Data Model12 (QDM) proposed by the 
National Quality Forum (NQF) along with open-source JBoss® Drools13 rules management system for the modeling 
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and execution of EHR-driven phenotyping algorithms. QDM is an information model and a grammar that is 
intended to represent data collected during routine clinical care in EHRs as well as the basic logic required to 
articulate the algorithmic criteria for phenotype definitions. Also, it is aligned with Meaningful Use standards to 
ensure that the clinical data and algorithmic criteria are represented in a consistent, unambiguous and reproducible 
manner. The NQF has defined several phenotype definitions (also referred to as eMeasures14) many of which are 
part of Meaningful Use Phase 1, using QDM and have made them publicly available. As indicated in our previous 
work15, while eMERGE and SHARPn, are investigating QDM for phenotype definition modeling and 
representation,  the definitions themselves, while structured, cannot be executed readily on existing EHRs. Rather, 
human interpretation, and subsequent implementation is a required step for this process. To address this need, the 
proposed study investigates open-source JBoss® Drools rules engine for automatic translation of QDM criteria into 
rules for execution over EHR data. In particular, using Apache Foundation’s Unstructured Information Management 
Architecture (UIMA)16 platform, we developed a translator tool for converting QDM defined phenotyping algorithm 
criteria into executable Drools rules scripts, and demonstrate their execution on real patient data from Mayo Clinic 
to identify cases for Coronary Artery Disease (NQF7417) and Diabetes (NQF6418).  

Background 
A high-level architecture describing the structured 
rule-based environment for modeling and executing 
EHR-driven phenotyping algorithms is shown in 
Figure 1. The environment is divided into three major 
parts: (1) the phenotyping algorithms complying with 
QDM, which are developed by the domain experts 
and clinicians along with informaticians, (2) the 
executable Drools rules scripts which are converted 
from (1), and the rules engine that executes the 
scripts by accessing patient clinical data to generate 
evaluation results and visualization, (3) the patient 
data prepared by the domain experts and IT 
personnel. They are the Extract-Transform-Load of 
“native” clinical data from the EHR systems into a 
normalized and standardized Clinical Element Model 
(CEM)5 database that is accessed by the JBoss® rules 
engine for execution. We describe all these aspects of 
the system in the following sections.   

 
Figure 1 Study Overview (adapted from eMERGE) 

NQF Quality Data Model 
The QDM is an information model that provides the syntax, grammar and a set of basic logical operators to 
unambiguously articulate phenotype definition criteria. The model is composed of four parts: category, data type, 
code list and attributes. Figure 2 shows the basic structure for category and attributes. The category is the highest 
level definition for QDM elements. Each category involves several states such as ordered, performed, documented, 
declined and etc. and also attributes, such as timing, data flow, actors and category specific. The combination of the 
category and the state forms the primitive data type. For example, medications that have been ordered are 
represented as MedicationOrdered. QDM allows the measure developer to assign a context in which the category of 
information is expected to exist. The code list defines the specific instance of the category by assigning a set of 
values or codes from standardized terminologies and coding systems. The main coding systems used in QDM 
includes RxNorm19 for medication, LOINC20 for lab test results and CPT21 for billing and insurance, and ICD-
9/ICD-1022/SNOMED-CT23 for classifying diseases and a wide range of signs, symptoms, abnormal findings. To 
facilitate authoring of the phenotype definitions using QDM, the NQF has developed a Web-based tool—the 
Measure Authoring Tool (MAT)24 —that provides a way to assess and understand specific healthcare behaviors, and 
a syntax to relate each QDM elements to other elements within a statement. Three main relationship types included 
within QDM are: relative timings, operators and functions.  
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In addition to above, QDM defines advanced data 
types under the umbrella of “Population Criteria”, 
and they include: Initial Patient Population (IPP), 
Denominator, Numerator, Exclusion, Measure 
Population and Measure Observation24. Each 
population criteria is composed of a set of declarative 
statements regulating what values the related 
primitive data types can take. These statements are 
organized hierarchically by logical operators, such as 
AND or OR (detailed examples are discussed in the 
Evaluation Section). The Initial Patient Population 
designates the individuals for which a measurement 
is intended. The Denominator designates the 
individuals or events for which the expected process 
and/or outcome should occur. The Numerator 
designates the interventions and/or outcomes 
expected for those identified in the denominator and 
population. 

Figure 2 Quality Data Model Information Structure 

Depending on the purpose of the measure, the Numerator can be a subset of the Denominator (for Proportion 
measures) or a subset of the Initial Patient Population (for Ratio measures). The Exclusion is displayed in the final 
eMeasure as Denominator Exclusion, and designates patients who are included in the population and meet initial 
denominator criteria, but should be excluded from the measure calculation. The Exception is displayed in the final 
eMeasure as Denominator Exception, and designates those individuals who may be removed from the denominator 
group. Both Measure Population and Measure Observation are for continuous variable measures only.  

As mentioned above, one can specify such criteria via MAT’s graphical interface using different QDM constructs 
and grammar elements as well as specify the requisite code lists from standardized terminologies including ICD-9, 
ICD-10, CPT, LOINC, RxNorm and SNOMED-CT. In addition to generating a human readable interpretation of the 
algorithmic criteria (as seen in Figure 2, MAT also produces an XML based representation, which is used by our 
translator tool for generating the Drools rules scripts (see below for more details).  

JBoss® Drools Rules Management System 
Drools13 is an open source, Apache Foundation, community based project that provides an integration platform for 
the development of hybrid knowledge-based systems. It is developed in Java and has a modular architecture: its core 
component is a reactive, forward-chaining production rule system, based on an object oriented implementation of 
the RETE25 algorithm. On top of this, several extensions are being developed: notably, the engine supports hybrid 
chaining, temporal reasoning (using Allen's temporal operators26), complex event processing27, business process 
management (relying on its twin component, the BPMN-2 compliant business process manager jBPM28) and some 
limited form of functional programming.  

A Drools knowledge base can be assembled using different knowledge resources (rules, workflows, predictive 
models, decision tables etc.) and used to instantiate sessions‚ where the runtime data will be matched against them. 
In the most common use cases, production rules written in a Drools-specific language (DRL) are used to process 
facts in the form of java objects, providing a convenient way to integrate the system with existing architectures 
and/or data models. 

The Drools rules can be ordered using salience, assigned to groups‚ and managed using meta-rules. Groups, in 
particular, allow to scope and limit the set of rules that can fire at any given moment: only group(s) that are active 
(focused) allow the execution. Furthermore, due to the tight integration between Drools and jBPM, groups can be 
layered in a workflow with other tasks. This allows to view the structured processing of a dataset by a rule base as a 
business process, or dually, to view rule processing tasks as activities within a larger business process. From a 
practical perspective, a workflow provides a graphical specification of the order of rule execution. 

Due to these advantages, our goal is to translate QDM defined algorithms into Drools rules scripts, and demonstrate 
their execution using EHR data for cohort identification.  

Clinical Element Models 
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As illustrated in Figure 1, a key aspect for execution of the algorithms and Drools rules is an information model for 
representing patient clinical data. For the SHARPn project, we leverage clinical element models for this task5, 29. 
Developed primarily by SHARPn collaborators at Intermountain Healthcare, CEMs provides a logical model for 
representing data elements to which clinical data can be normalized using standard terminologies and coding 
systems. The CEMs are defined using a Constraint Definition Language (CDL) that can be compiled into 
computable definitions.  For example, a CEM can be compiled into XML Schema Definitions (XSDs), Java or C# 
programming languages classes, or Semantic Web Resources Description Framework (RDF) to provide structured 
model definitions. Furthermore, the CEMs prescribe that codes from controlled terminologies be used as the values 
of many of their attributes. This aspect, in particular, enables semantic and syntactic interoperability across multiple 
clinical information systems.  
In Figure 3 , a sample CEM data element for 
representing Medications Order is shown. This 
CEM might prescribe that a medication order 
has attributes of “orderable item”, “dose”, 
“route” and so on. It may also dictate that an 
orderable item’s value must be a code in the 
“orderable item value set”, which is a set list 
controlled codes appropriate to represent 
orderable medications (e.g., RxNorm codes). 
The attribute dose represents the “physical 
quantity” data type, which contains a numeric 
value and a code for a unit of measure. Instance-
level data corresponding to the Medication 
Order CEM is also shown in Figure 3. The 
CEMs can be accessed and downloaded from 
http://sharpn.org.  
 

 
Figure 3 Example CEM for medication order  

(adapted from  Welch et al. 26)

Methods 
 

UMIA-based Translator for Converting QDM Definitions to Drools 
 

As described in Introduction, the goal of the translator is to translate the QDM-based phenotype definitions into a set 
of executable Drools rules. To achieve this objective, we implemented the translator using the open-source Apache 
UIMA platform due to the following reasons: firstly, the transformation process leverages the UIMA type system 
(see details below). Second, UIMA is an industrial strength high-performance data and workflow management 
system. Consequently, via UIMA, we can decompose the entire translation process into multiple individual sub-
components that can be orchestrated within a data flow pipeline. Finally, the use of UIMA platform opens a future 
possibility for integrating our transformation tool within SHARPn’s clinical natural language processing 
environment—cTAKES30—which is also based on UIMA. In what follows, we discuss the four major components 
and processing steps involved in implementing the QDM to Drools translator.  

Figure 4 shows the overall architecture of the QDM to Drools translator pipeline system. Once the eMeasure and 
phenotype definitions are modeled in NQF’s Measure Authoring Toolkit (MAT), in addition to the human readable 
representation of the phenotype definition criteria (for example, as shown in Figure 6), the MAT also generates an 
XML and Microsoft Excel files comprising the structured definition criteria conformant to QDM, and the list of 
terminology codes and value sets used in defining the phenotype definition, respectively.  (In Figure 4, these 
informational artifacts are represented as yellow hexagons). Both the XML (containing the phenotype definition) 
and Excel (containing the list of terminology codes relevant to the phenotype definition) are required input for the 
translator system.  

MedicationOrder

orderableItem     CD,
dose                   Physical Qty,
route                  DrugRoute,
frequency          DrugFrequency,
startTime           DateTime,
endTime            Date Time,
orderedBy         CD,

MedicationOrder

orderableItem   (201517
                         RxNorm,
                         PenVK)
dose                 250,
route                 Oral,
frequency         Q6H,
startTime          09/01/2010 10:01
endTime           09/11/2010 23:59
orderedBy         (83532, NPI)

Model Instance 
Data
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Figure 4 Overall architecture for QDM to Drools translator system 

As noted above, our implementation of the translator is based on UIMA that provides a robust type system—a 
declarative definition of an object model. This type system serves two main purposes: (a) to define the kinds of 
meta-data that can be stored in the UIMA Common Analysis Structure (CAS), which is the XML-based data 
structure to store analyzed information; and (b) to support the description of the behavior of a process module. In 
particular for our implementation, the meta-data from QDM, including both data criteria and population criteria, are 
defined as UIMA types. All related attributes are also defined accordingly, such that, each UIMA type carries the 
semantics of corresponding QDM data types in a declarative fashion.  Consequently, the UIMA type system not 
only allows the representation and storage of the QDM data and population criteria as well as their attributes into 
CAS, but also provides the flexibility to sequentially process this information in a declarative manner. 

In UIMA, a CAS Consumer—a Java object that processes the CAS—receives each CAS after it has been analyzed 
by the analysis engine. CAS Consumers typically do not update the CAS; they simply extract data from the CAS 
and persist selected information to aggregate data structures, such as search engine indexes or databases. In our 
work, we adopt a similar approach and define three CAS Consumers—Data Criteria Consumer, Population Criteria 
Consumer, and Drools Fire Consumer—for processing the QDM data and population criteria as well as for 
generating and executing the Drools artifacts.  Note that as mentioned earlier, a Drools engine architecture is 
composed of three or four parts: an object-oriented fact model, a set of rules, a rule flow (optional) and an 
application tool. The fact model, in our case, is generated by the Data Criteria Consumer by extracting code lists 
from the QDM value sets, and mapping the value sets to corresponding types within the UIMA type system. The 
rules, which are in essence declarative “if-then-else” statements to implement QDM data criteria, are processed by 
the Population Criteria Consumer to operate on top of the fact model. The rule flow is a graphical model to 
determine the order the rule being fired (namely, which data criteria is fired in our work). It allows the user to 
visualize and thus control the workflow. The application tool is composed of several Java classes that are 
responsible for creating the knowledge base, including adding all rules and the rule flow.  

Mapping QDM Categories to Clinic Element Models (CEMs) for Query Execution 
As described above, the SHARPn project leverages CEMs for consistent and standardized representation of clinical 
data extracted from patient EHRs. While for this study, we persisted CEM XML instances of patient data in a 
MySQL database, one could potentially serialize the CEM XML files to other representations, including resource 
description framework (RDF) as demonstrated in our previous work1. Regardless of the persistence layer, in order 
for QDM-based Drools rules to execute on top of a CEM database with patient data, one has to create mappings 
between both information models. Fortunately, such a mapping can be rather trivially achieved between QDM 
categories and CEMs. Table 1 below shows how we mapped the QDM categories to existing CEMs developed 
within the SHARPn project. For example, the Medication CEM (Figure 3 ) with the qualifiers, such as dose, route, 
and frequency, can be mapped to the QDM category called Medication with the same attributes. This allows, SQL 
queries against the CEM database to be executed to retrieve the relevant information required by given rules The 
entire execution process is orchestrated by the Drools Engine Consumer, which in essence, compiles the Drools 
rules based on the phenotype definition and logical criteria specified within the QDM Population Criteria, and 
provides support for both synchronous and asynchronous processing of CEM-based patient data. 

QDM XMLHTML 
E-Measure

XSLT

XML 
Schema 
for QDM

Code Value Set 
in SpreadSheet

UIMA 
QDM 

Data Criteria 
AE

UIMA Basic 
Type 

System

UIMA 
Population 

Criteria 
AE

UIMA 
Advanced  

Type System 

UIMA 
CAS

UIMA 
QDM 

Data Criteria 
Consumer

Drools Fact 
Model 
(*.java)

UIMA 
QDM 

Population 
Criteria 

Consumer

Drools JBoss 
Rule (*.drl)

Application 
for Executing 

Drools 
(*.java)

UIMA
Drools Engine 

Consumer 

CEM DB
(Patient 
Data)

Final Reports 

Drools Engine

Rule Flow 
(*.jbpm)
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QDM Categories CEMs 

Adverse effect (allergy and non-allergy) Signs and symptoms 

Patient characteristics Demographics 

Condition/Diagnosis/Problem Problem 

Device Not yet deployed in SHARPn  

Encounter Encounter 

Family history Family History Health Issue 

Laboratory test result Laboratory 

Medications  Medication 

Procedure performed  Procedure 

Physical exam Basic exam evaluation 

Table 1 Mapping between QDM categories and corresponding CEMs 

Implementation Evaluation 
To evaluate our implementation, we extracted demographics, billing and diagnoses, medications, clinical procedures 
and lab measurements for 200 patients from Mayo’s EHR, and represented the data within the CEM MySQL 
database. In this initial experiment, we executed two Meaningful Use Phase 1 eMeasures developed by NQF31: 
NQF64 (Diabetes Measure Pair) and NQF74 (Chronic Stable Coronary Artery Disease: Lipid Control) against a 
CEM-based MySQL database. As shown in the pipeline, once the Drools rules are generated, the Drools Engine Fire 
Consumer will invoke the Drools engine. In the process, the rules are fired one by one along the rule flow against 
each patient’s corresponding data values. For each patient, a series of Boolean values generated accordingly for each 
data criteria will be stored into the working memory together with the data values. A key aspect of this entire 
process is to execute the QDM Population Criteria comprising the Initial Patient Population, Numerator, 
Denominator, Exceptions and Exclusions with their logical definitions.  

To achieve this, we designed a data 
structure called population tree to 
represent the logical structure of the 
phenotype definition. Each node in a 
population tree is composed of 
primitive data types, their logical 
operators and also their relative 
locations. The relative location is 
created to reflect the hierarchical 
structure of the population criteria. 
We developed a simple postorder 
traversal algorithm (Figure 5) that 
analyzes the Population Criteria, and 
evaluates if a given patient meets the 
appropriate criteria for the 
Numerator, Denominator and 
Exclusions.   

As an example, Figure 6 shows the 
complete population criteria for NQF6412 (Diabetes) 31, and the traversal order for one of its Numerator criteria is 
shown in Figure 7. From left to right, the tree expands from root to leaves. The root is a dummy node without logical 
operator. There are two branches under the root. The first corresponds to LDL lab test result and the second to an 
AND node without a data type. Under the second, there are four leaves where their logical levels are from 2.1 to 2.4. 
After the Drools engine is fired, each patient “walks” through the population tree algorithm as shown in Figure 7. 
Namely, firstly, a Boolean value, satisfied is assigned as true. Next, at each node in the tree, satisfied is updated 
based on the patient’s corresponding data value. When the “patient exits” the tree, if satisfied is still true, the 
population count is incremented. 

Algorithm 1: Postorder Traversal of the population tree   
Boolean satisfied = true, int level = 0, int level size = 0 
while populationTree iterator hasNext 
//check if data criteria have true values obtained from fired Drools  

if data criteria is true  
satisfied is true; 

else if not true, but logic operator is AND,  
satisfied is false; 

else if not true, but logic operator is OR and counter<level size,  
satisfied is true; 

if not true, but the level is at the end,  
satisfied is false. 

end while 
if satisfied is true,  

add counts to populationTree; 
 

Figure 5 Postorder traversal algorithm for population tree 
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Figure 6 Population Criteria for NQF64 (Diabetes) 

 

Figure 7 The sample traversal for Numerator of NQF 64 
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Once all the numerator, denominator and exclusion criteria have been processed, the next step is to calculate the 
eMeasure proportions defined as Figure 8. by NQF31: Similar to our implementation and evaluation of NQF64 
eMeasure for Diabetes, we experimented with NQF74 eMeasure for Coronary Artery Disease, although due to space 
limitations, we exclude the discussion about NQF74. 

 

 

 

 

 

 

 

 

 

 
 
Discussion 
In this study, we propose and implement an approach for structured representation of phenotype definitions using 
the NQF Quality Data Model, and its execution on EHR data by using the open-source JBoss Drools business rules 
management environment. A similar study was conducted by Jung et al.32 where the authors investigated automatic 
translation of phenotype definition and criteria represented using HL7 Arden syntax to Drools rules using XSLT 
stylesheets. The XSLT stylesheets were also used to create a user interface for manual validation of the Drools rules, 
and eventually create an application to drive the execution of the rules.  

There are few related efforts  10, 31,32 that have attempted in the automatic conversion of phenotyping definitions into 
executable code. Most notably, Jung et al. 32 implemented a platform for expressing clinical decision support logic 
using the HL7 Arden syntax that can be automatically translated to executable Drools scripts. Unlike our UIMA-
based approach, this translation was done using Extensible Stylesheet Language Transformations (XSLTs).  

While similar in spirit, we believe our work highlights at least three significant aspects. First, to the best of our 
knowledge, this is the first study that has attempted to automatically generate executable phenotyping criteria based 
on standards-based structured representation of the cohort definitions using the NQF QDM. Second, we demonstrate 
the applicability of open-source, industrial-strength Drools engine to facilitate secondary use of EHR data, including 
patient cohort identification and clinical quality metrics. Finally, we have successfully integrated UIMA and JBoss 
Drools engine within a run-time execution environment for orchestration and execution of phenotyping criteria. This 
opens future possibilities to further exploit the advanced process and/or event management technologies contained 
in jBPM and Drools Fusion. The latter, in particular, handles CEP (Complex Event Processing, which deals with 
complex events) and ESP (Event Sequence Processing, which deals with real-time processing of huge volume of 
events). 
 
However, there are several limitations outstanding issues that warrant further investigation. For example, in this 
study, we investigated only two NQF eMeasures to evaluate the translation system. While both these eMeasures are 
complex in nature and represent various elements of the QDM, additional evaluation is required. To this end, we 
have already started implementing the existing phenotyping algorithms developed within the eMERGE consortia as 
well as the Meaningful Use Phase 1 eMeasures defined by NQF. Additionally, in this first effort, our focus was on 
core logical operators (e.g., OR, AND). However, QDM defines a comprehensive list of operators including 
temporal logic (e.g, NOW, WEEK, CURTIME), mathematical functions (e.g., MEAN, MEDIAN) as well as 
qualifiers (e.g., FIRST, SECOND, RELATIVE FIRST) that require a much deeper understanding of the underlying 

• Calculate the final denominator by including all the patients that meet the denominator criteria. 
• Subtract from the final denominator all patients that do not meet numerator criteria, yet satisfy 

the exclusion criteria. 
• Define the final calculation as follows: 

o For "Proportion" measures, the calculation is the total number of patients satisfying 
the numerator criteria divided by the final denominator. 

• For measures with multiple denominators, repeat the above process for each denominator and 
report each result separately. 

• For measures with multiple patient populations, repeat the above process for each patient 
population and report each result separately. 

• For measures with multiple numerators, calculate each numerator separately within each 
population using the paired exclusions (where applicable). 

Figure 8 Population Calculation Psudocode 
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semantics, and subsequent implementation within the UIMA type system. Our plan is to incorporate these additional 
capabilities in future releases of our translation system.  

Conclusions and Future Work 
In conclusion, we have developed a UIMA-based QDM to Drools translation system. This translator integrates XML 
parsing of QDM artifacts, as well as Drool scripts and fact model generation and eventually execution of the Drools 
rules on real patient data represented within clinical element models. We believe we have demonstrated a promising 
first step towards achieving standards-based executable phenotyping definitions, although a significant amount of 
future work is required, including further development of the translation system as QDM continues to evolve and is 
being updated.  

As mentioned above, our next step is to expand the framework to all the existing Meaningful Use Phase 1 
eMeasures. Additionally, we plan to develop a Web services architecture that can be integrated with graphical and 
user friendly interfaces for querying and visual report generation. And last, but not the least, in the current 
implementation with the CEM database, we are limited to information that is contained within the CEM instances of 
patient data. Hence, the capability to execute free-text queries on clinical notes, for example, is missing. As 
mentioned earlier, since SHARPn’s clinical natural language processing pipeline—cTAKES—is also based on 
UIMA, one of our objectives is to extend the current implementation to incorporate processing of queries on 
unstructured and semi-structured clinical text.  

Software access. The QDM-to-Drools translator system along with sample eMeasures NQF64 and NQF74, can be 
downloaded from: http://informatics.mayo.edu/sharp/index.php/Main_Page. 
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